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The propagation of extreme events in space is analyzed for a class of dynamical systems giving rise to
spatiotemporal chaos. It is shown that this process can be mapped into a generalized random walk, whereby the
mean square displacement increases linearly in time and there is a nonvanishing probability for jumps beyond
first neighbors. The relative roles of the local dynamics and of the spatial coupling are identified.
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I. INTRODUCTION

There is a growing interest in the study of extreme events
in view of their paramount importance in such key areas as
global environment, sociology, and finance �1,2�. A variety of
methodologies for tackling extreme event-related problems
is currently available, from the classical statistical theory �3�
to more recent approaches in which the deterministic char-
acter of the underlying dynamics is taken into account �4�.

Ordinarily when dealing with extremes one focuses on
global properties extracted from the available record, among
which the statistics of return times or the frequency of level
crossings are of special interest. Now, real world systems are
extended in space. The relevant issue as far as both predic-
tion and protection are concerned is then not only whether an
extreme event will or will not occur globally but, even more
so, what is the particular spatial location that will witness at
a given time period the occurrence of such an event. This
question can be mapped, in turn, into how extremes propa-
gate in space. The objective of the present paper is to outline
an approach to this problem for a class of deterministic dy-
namical systems giving rise to chaotic behavior.

The general formulation is outlined in Sec. II. Sections III
and IV are devoted, respectively, to the spatiotemporal dy-
namics of extremes in spatially extended model systems giv-
ing rise to fully developed chaos and to intermittent chaos.
Although abstract, these models are prototypical in the sense
that they capture the main features of the dynamics under
consideration. Emphasis is placed on the relative roles of the
strength of spatial coupling and of the local dynamics in the
characteristics of extreme propagation. The dynamics of ex-
tremes in Fourier space is considered in Sec. V and the main
conclusions are summarized in Sec. VI.

II. FORMULATION

Consider a discrete one-dimensional lattice of N spatially
coupled elements each described by a continuous variable
xn�j�, where n is a discrete time and j is the lattice point. Let
f�x� be a function describing the local dynamics and D the
coupling constant between a cell located on j with its first
neighbors j�1. The evolution of xn�j� is then given by the
set of N coupled equations

xn+1�j� = f�xn�j�� +
D

2
�g�xn�j + 1�� + g�xn�j − 1�� − 2g�xn�j��� ,

�1�

where g is the coupling function. In the sequel we will adopt
the choice g= f frequently made in the literature �5�, choose
an even number of cells, and write Eq. �1� as

xn+1�j� = �1 − D�f�xn�j�� +
D

2
�f�xn�j + 1�� + f�xn�j − 1���,

1 � j � N . �2a�

Unless otherwise specified, periodic boundary conditions
will be used throughout and the domain of variation of x and
f�x� will be limited to the interval �a ,b�,

xn�j� = xn�j + N�, a � x � b, a � f�x� � b . �2b�

As mentioned in Sec. I, Eqs. �2� are meant to be proto-
typical, encompassing large classes of dynamical systems
giving rise to complex nonlinear behaviors. In this sense the
function f�x� describing the local dynamics is, typically, a
one-dimensional endomorphism, as obtained by mapping an
underlying continuous time dynamics on a Poincaré surface
of section and by subsequently projecting this mapping along
the most unstable direction of the motion. The choice of
nearest-neighbor coupling is motivated by the fact that most
of the continuous time models representing real world physi-
cochemical systems are in the form of partial differential
equations involving the nabla or the Laplace operators
which, once discretized in space, couple any given point to
its first neighbors only. More involved couplings including
global ones may be used when modeling networks such as
neural nets, information systems, or social systems. They
give rise to interesting behaviors, including partial or total
synchronization �6�, which are out of the scope of this work
since the dynamics of extremes becomes then rather straight-
forward.

Among the different properties of the spatiotemporal dy-
namics generated by Eq. �2�, we are interested here in the
instantaneous location of the largest value of xn�j� observed
in the lattice, Mn�i�=max�xn�j��. The question we address is
how Mn�i� will propagate in space, i.e., how the lattice site i
bearing initially �n=0� the largest value observed instanta-
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neously on the lattice will move time going on. We will
proceed by mapping this question into a problem of general-
ized random walk �7�, in which the main quantity of interest
is the jump �rm �in multiples of the lattice distance� accom-
plished at intermediate times m=1,2 , . . . ,n, the total dis-
placement realized at the observation time n being

rn = �
m=1

n

�rm

with rn
2 = �

m=1

n

�rm
2 + �

m�m�=1

n

�rm�rm�. �3�

Given the probability density P��r� and other statistical
properties of �r, the objective is then to derive the behavior
of the displacement rn as a function of the coupling constant
and of the parameters built in the iterative mapping f�x�.

To get a feeling on the role of the local dynamics it is
instructive to consider briefly, as a reference, the case of N
uncoupled �D=0� elements in each of which x is the out-
come of a process of uniform noise. Clearly, the displace-
ments �r are then uniformly distributed with a probability
distribution, mean, and variance given by

P��r� =
1

N
, 0 � �r � N − 1, mod

N

2
,

=0, otherwise,

��r	 = 0,

��r2	 =
1

N
�
j=1

N/2

j2 + �
j=1

N/2−1

j2� =
N2 + 2

12
, �4�

where in writing the last relation care was taken to avoid
double counting of the cell 1�N+1. Applied to Eq. �3� these
relations yield

�rn	 = 0,

�rn
2	 = n��r2	 = n

N2 + 2

12
�5�

since the individual �rm’s are here independent ���m�rm�	
=0� and identically distributed random variables. It follows
that the position of the instantaneous maximum undergoes as
far as its second moment is concerned a random walk with
an effective “diffusion” coefficient

d =
N2 + 2

24
=

��r2	
2

.

As an example for N=50 one gets ��r2	=208.5 and d
=104.25.

III. FULLY DEVELOPED SPATIOTEMPORAL CHAOS

In this section we consider the spatiotemporal dynamics
of maxima in systems operating in the regime of fully devel-

oped chaos. Clearly, the spatial mobility of the maximum
will be conditioned by the two following factors: �i� its so-
journ probability on the cell in which it originally occurred;
�ii� the extent to which the coupling D limits the range and
frequency of jumps between the different lattice points vis-
ited consecutively by it.

The first of these factors depends essentially on the nature
of the local dynamics and, in particular, on the location of the
image and preimages of the region close to the maximum
value x=b. We shall first consider the uncoupled case �D
=0� in which the mobility coefficient can be computed ana-
lytically, and perform subsequently numerical simulations
confirming the theoretical predictions in this limit and ex-
tending them to the analytically intractable case of nonzero
coupling.

A. Logistic maps

As a first representative model we consider a lattice of
logistic maps. Consider the local dynamics in absence of
coupling,

xn+1 = 1 − �xn
2, − 1 � xn � 1, �6�

with �=2. Clearly, if set initially to a value close to 1 �its
maximum value�, the variable x is bound to evolve to a value
close to −1 in the next iteration. The sojourn probability of
maximum in the cell j=0 on which it initially occurred is
thus zero and, starting from this cell, jumps of all possible
magnitudes to the other cells are equally probable:

P��r� = 0, �r = 0,

=
1

N − 1
, �r � 0. �7�

The variance of �r is given by

��r2	 =
1

N − 1
�
j=1

N/2

j2 + �
j=1

N/2−1

j2�
or, comparing with Eq. �4�,

��r2	 =
N

N − 1
���r2	�uniform noise. �8�

Figure 1 depicts the probability density of the jumps �r as
obtained from the numerical solution of the full set of equa-
tions �2� for N=50 and f given by Eq. �6�. The full line in
Fig. 1 stands for the limiting case of uncoupled cells leading
to a distribution of �r in full agreement with the analytic
result of Eq. �7�. The dashed line pertains to the opposite
case of strong coupling. The distribution of �r develops now
a more intricate structure reflected by strong selection rules
whose expected overall result is to enhance the mobility of
the maximum. This is confirmed by Fig. 2�a�, in which the
behavior of the mean square distance as a function of time n,
�rn

2	, is summarized. The full line in the figure refers to the
uncoupled case D=0. It is a straight line whose slope, equal
to 
213, is again in full agreement with analytic result of
Eq. �8�. For reference the result pertaining to 50 uncoupled
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cells each undergoing a uniform noise process is also de-
picted �open circles� revealing a slope of 
208.5 in full
agreement with Eq. �5�. Switching on a nonzero coupling
�dashed and dotted lines in the figure� keeps the behavior
still diffusive since the corresponding curves are straight
lines but the overall mobility tends to be enhanced as antici-
pated in the comments made in connection with Fig. 1. There
is nevertheless some variability around this general trend as
seen in Fig. 2�b�, where the slopes �or equivalently the mo-
bilities� are plotted against the coupling coefficient D. The
origin of this variability is to be sought in the complexity of
the phase diagram of the dynamical system defined by Eqs.
�2� and �6�. In particular, detailed analysis reveals the pres-
ence of period 2 �in both space and time� windows for values
of D close to 0.2, 0.7, and 0.8. Clearly in the vicinity of the
corresponding bifurcation points transport is bound to be
more sluggish and this is indeed reflected by the decreasing
trends seen in these regions in Fig. 2�b�.

The diffusive character of the propagation of the maxi-
mum has been further confirmed by the computation of
higher moments of rn and of its probability distribution �not
shown�. As it turns out the skewness is zero for all n’s and
the kurtosis tends rapidly to zero, whereupon the probability
distribution becomes Gaussian.

Figure 3 shows a time series of successive values of the
instantaneous position rn of the maximum for weakly
coupled logistic maps. As can be seen the evolution is quite
irregular. To test statistical independence of the successive
events we use the method of contingency tables combined
with a �2 test �8�. The analysis reveals that to the 5% level,
contrary to a record generated by random noise, the time
series of Fig. 3 is correlated.

B. Bernoulli maps

We next turn to a lattice of Bernoulli maps. The local
dynamics in the absence of coupling is now given by

xn+1 = 2xn mod 1 0 � x � 1. �9�

Contrary to the logistic map, starting with x close to its maxi-
mum x=1 favors the occurrence of x values in the same
range, entailing that there is now a nonvanishing sojourn
probability of the maximum in the starting cell. As a result,
the mobility of the maximum is expected to decrease com-
pared to both the uniform noise and logistic cases, despite
the fact that the invariant probabilities of x for uniform noise
and for the Bernoulli system are identical. Clearly, we have
here a signature of the deterministic character of the process.

0
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P

FIG. 1. Probability of jumps �r �in multiples of the lattice dis-
tance� from the cell containing initially the largest value of x as
obtained numerically from Eq. �2� with N=50 and f given by Eq.
�6�. The �dimensionless� coupling constant D is D=0 �full line� and
D=0.95 �dashed line�. Number of realizations is 105.
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FIG. 2. �a� Time evolution of the mean square displacement �multiples of the lattice distance squared� of the largest value of x �Eq. �3��
for the model of Fig. 1 for different values of the �dimensionless� coupling constant D. Empty circles stand for the behavior of a uniform
noise on the same interval. �b� Dependence of the associated mobility coefficient of the extreme on coupling D.
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FIG. 3. Time evolution of the location rn �in multiples of the
lattice distance� of the cell containing the maximum value of x for
the model of Fig. 1 with D=0.05.
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To obtain a quantitative estimate we partition the unit in-
terval into K equal cells �which constitutes a Markov parti-
tioning� and agree to regard the rightmost cell CM = �1
−1 /K ,1� as the interval of variation of the maximum. After
one iteration this cell will be mapped into f�CM�= �1
−2 /K ,1� such that �a�, f�CM� contains CM entirely; and �b�,
the measure of the intersection f�CM��CM is equal to that of
the complement CM� of CM in f�CM�. It follows that the a
priori probabilities of the maximum to remain in CM or to
leave it are both equal to 1/2. In the event that the maximum
will leave CM, in the absence of coupling jumps of all pos-
sible magnitudes to the other cells will be equally probable.
This leads to the following form of the jump probability
P��r�:

P��r� =
1

2
, �r = 0,

=
1

2�N − 1�
, �r � 0. �10�

The variance ��r2	 corresponding to this distribution is

��r2	 =
1

2�N − 1�
�
j=1

N/2

j2 + �
j=1

N/2−1

j2� �11�

or, comparing with Eq. �7�,

��r2	 =
1

2
���r2	�logistic =

N

2�N − 1�
���r2	�uniform noise.

�12�

In Fig. 4 the probability densities of �r as obtained from
the numerical solution of the full set of equations �2� for N
=50 and f given by Eq. �9� are shown. In the uncoupled cell
case �full line� full agreement with the analytic result of Eq.
�10� is obtained. In the opposite limit of strong coupling
�dotted line, D=0.95�, one obtains a more intricate depen-
dence indicating that jumps to all cells except to the nearest
and to the farthest ones of the reference cell may occur with
practically equal probabilities �dotted line�. The behavior of
the mean square displacement �rn

2	 of the maximum as a
function of time, for different coupling strengths, is summa-
rized in Fig. 5�a�. In all cases a straight line indicative of
diffusive behavior is observed. In the limit of uncoupled cells
�D=0� the slope of this line is in full agreement with the
estimate of Eq. �11�. As D is gradually switched on, the
slope—and thus the mobility of the maximum—is practically
increasing monotonously �contrary to the logistic map case�,
as seen in Fig. 5�b� where the mobility is plotted against D.
For strong couplings �D=0.95, dotted line in Fig. 5�a�� the
result becomes indistinguishable from that corresponding to
uncoupled cells undergoing a uniform noise process. The
computation of higher moments and of the probability distri-
bution of rn confirms the diffusive character of the process,
which is asserted after a short transient stage during which
the kurtosis takes nonzero values.

Finally, the time series of successive values of the instan-
taneous position rn of the maximum �not shown� has similar
properties as in the logistic map case. In particular, the suc-
cessive values are statistically correlated.

IV. INTERMITTENT CHAOS

We shall now extend the analysis of the preceding section
to account for the presence of more intricate forms of chaos.
Specifically, we consider N spatially coupled cells �Eq. �2��
in each of which the local dynamics described by the map-
ping f�x� is intermittent as a result of the marginal stability
�slope of f�x� equal to 1� of one of its fixed points. Without
loss of generality, the latter will be chosen to lie on one �or
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FIG. 4. As in Fig. 1 with f given by Eq. �9�. Right ordinate
stands for the case of D=0.95.

1x104

2x104

0 25 50 75 100

D=0

n

D=0.01

D=0.05

D=0.95
< r2 >

100

140

180

220

0 0.2 0.4 0.6 0.8 1D

M
ob

ili
ty

(x
2)

(b)(a)

FIG. 5. �a� As in Fig. 2�a� with f given by Eq. �9�. �b� As in Fig. 2�b� with f given by Eq. �9�.
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both� the end points a and b of the domain of variation of x
and f�x� close to which the map will then have the limiting
form �9�

f�x� = x + ��x − a�z x → + a �13�

and similarly for x→−b if b happens to be a tangency point,
with z�1.

Intuitively, for weakly coupled cells one expects that if
the laminar region is limited to the neighborhood of the left-
most point the sojourn time of the extreme �bound to be
close to b� in the cell in which it is initially observed will be
very small. As a result, the mobility of the extreme will be
large. Conversely, if the neighborhood of the rightmost point
b happens to be a laminar region the sojourn time will be
large and the mobility will be small. With increasing values
of the coupling constant D the nature of the local dynamics
will be altered and, in the strong coupling limit, the situation
is expected to be not very different from the one described in
the preceding section.

In the sequel we confront these qualitative predictions
with the numerical study of two representative examples of
intermittent chaos, whose study will also reveal some further
interesting trends:

�i� the symmetric cusp map

f�x� = 1 − 2�x�1/2, − 1 � x � 1 �14a�

for which x=−1 is the �unique� marginally stable fixed point;
�ii� the antisymmetric cusp map

f�x� = 1 − 2�x�1/2, − 1 � x � 0,

=− 1 + 2�x�1/2, 0 	 x � 1. �14b�

for which both x=−1 and x=1 are marginally stable fixed
points. In either case the limiting form of f�x� around −1
and/or 1 is as in Eq. �13� with an exponent z equal to z=2.

Figures 6�a� and 6�b� depict the behavior of the mean
square distance �rn

2	 as a function of n for maps �14a� and
�14b�, respectively. In both cases the behavior is essentially
diffusive, at least up to times n
102, but there are marked
differences in the mobility of the maxima. In the symmetric
map �Eq. �14a�� the mobility of the maximum in absence of
coupling �D=0, full line� is higher than the one obtained for
an equal number of uncoupled cells each undergoing a uni-

form noise process �open circles� the opposite being true in
the antisymmetric map �Eq. �14b��, in full agreement with
the prediction advanced earlier in this section. As the cou-
pling strength is increased the mobility is increasing in a
practically monotonic fashion for both the symmetric and the
antisymmetric case as seen in Fig. 7, where the mobilities are
plotted against D. In the limit of strong coupling the behavior
is practically indistinguishable from the case of fully devel-
oped chaos, a fact that is further reflected by the coincidence
for all practical purposes of the corresponding probability
distributions of displacements �r �not shown�.

The persistence of the maximum in a given cell condi-
tioned by its initial occurrence in this cell in the antisymmet-
ric cusp case is further illustrated in Fig. 8. It takes its most
pronounced form in absence of coupling �full line� and still
holds albeit in a milder form up to moderate couplings �dot-
ted line�. Clearly, we are here in presence of a highly corre-
lated process compared to the behavior depicted in Fig. 3.

V. EXTREME DYNAMICS IN FOURIER SPACE

In spatially extended systems it is often useful to expand
the variables in series of linearly independent functions in-
corporating symmetry properties and boundary conditions.
Arguing in terms of the expansion coefficients—the
modes—rather than the original variables allows then one to
capture collective properties that would otherwise remain
blurred, especially if eventually the essence of the dynamics
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FIG. 6. As in Fig. 2�a� with f given by �a�, Eq. �14a� and �b�, Eq. �14b�.
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FIG. 7. As in Figs. 2�b� and 5�b� with f given by Eq. �14a�
�empty circles� and Eq. �14b� �crosses�.
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turns out to be borne by a limited number of modes. The
objective of this section is to study how the extreme value
dynamics is projected into the different spatial modes of the
coupled map system described by Eq. �2�.

In view of the boundary conditions adopted a Fourier ex-
pansion appears to be the most adequate one,

ak =
1

N
�
j=1

N �cos
2


N
kj + i sin

2


N
kj�x�j� , �k = 0, . . . ,N − 1� .

�15�

Among the different ak’s, a0 and aN/2 are real and correspond
to the space average and to the fastest space-varying combi-
nation of the x�j�’s, respectively,

a0 =
1

N
�

j

x�j� , �16a�

aN/2 =
1

N
�

j

cos 
jx�j� =
1

N
�− x�1� + x�2� − x�3� + ¯� .

�16b�

All other modes are complex conjugate, with

Re ak = Re aN−k, 1 	 k 	
N

2
. �17�

Furthermore, a0 and aN/2 are the only modes containing com-
binations of all the variables present.

Consider now Eq. �2� in the weak coupling limit. Two
cases may be distinguished:

Case 1. The probability density associated to the iterative
mapping f�x� �assumed to fulfill sufficiently strong ergodic
properties� has its maximum �or takes at least appreciable
values� in both the neighborhood of the rightmost point b,
where the extreme of x is expected to occur, and that of the
leftmost point a. This is what happens, for instance, in the
logistic map for �=2 and in the antisymmetric cusp map. It
follows that the probabilities of having all x�j�’s close to
their extremum or half of them close to it and the other half
close to their minimum are appreciable. In turn, the corre-
sponding values for a0 and aN/2 will be comparable and large
with an appreciable probability, and larger than the values of
the other modes owing to the absence of some of the x�j�’s in
the latter. This prediction is confirmed entirely by the results
of the numerical evaluation of the modes using Eqs. �2� and
�15�, reported in Figs. 9�a� and 9�b� for the logistic and the
antisymmetric cusp maps, respectively. As the coupling D is
gradually increased the selection becomes increasingly
sharper in the logistic map case: mode a0 imposes itself as
the main bearer of the extreme dynamics, while the role of
aN/2 and even more so that of the other modes is becoming
increasingly weak. The selection is milder in the antisym-
metric cusp map case, where it tends to enhance the role of
large spatial scales �small k’s�.

Case 2. The probability density of f�x� is a decreasing
function of x, taking its smallest values in the neighborhood
of the point where the extreme of x is occurring. This is what
happens, in particular, in the symmetric cusp map. It follows
that the probability of having all x�j�’s close to their extre-
mum �here x=1� is very small or, alternatively, that mode a0
is essentially not populated. Conversely, the probability of
having the odd-numbered cells close to their smallest value
�here x=−1� leaving the even-numbered cells to an interval
of values close to the mean is appreciable. It follows that
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FIG. 8. Time evolution of the location rn �in multiples of the
lattice distance� of the cell containing the maximum value of x for
the antisymmetric cusp map �Eq. �14b�� with D=0 �full line� and
D=0.1 �dashed line�.

-8

-6

-4

-2

0

0 5 10 15 20 25a
k

ln(P)

0.025

0.075

0 5 10 15 20 25

P

a
k(b)(a)

FIG. 9. Probability density of extremes in the Fourier space with N=50 and three different �dimensionless� coupling coefficients D=0
�full line�, D=0.1 �dashed line�, and D=0.95 �dotted line� as obtained numerically for the logistic map �a� and the antisymmetric cusp map
�b�. Modes for which P is strictly zero �modes 9 to 19 in case �a� and D=0.95� are omitted in the corresponding graphs.
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mode aN/2 is populated appreciably and becomes thus the
main carrier of the extremes in Fourier space, since as no-
ticed earlier the other modes contain a lesser number of
x�j�’s. Again, this is confirmed entirely by the results of the
numerical evaluation depicted in Fig. 10. Notice that as D is
increased the mode a0 is becoming increasingly relevant and,
in the strong coupling limit, it is the main carrier of the
extremes. In this particular range the dynamics of the full
system of coupled cells becomes, naturally, quite different
from that of the single map looking in fact closer to what is
happening in case 1.

As a corollary of the foregoing one expects that the so-
journ probability of the extremum on mode a0 �if started
initially on this state� will be substantial in case 1, the oppo-
site being true for mode aN/2 as soon as the coupling D
reaches appreciable values and for mode a0 in case 2. This is
confirmed by the results of numerical evaluation starting
from the full set of equations �not shown�.

VI. CONCLUSIONS

The propagation of extremes in space is of central impor-
tance in the problematics of prediction of complex systems.

In this work we have analyzed some features of this process
for prototypical classes of dynamical systems giving rise to
spatiotemporal chaos. Our main conclusion has been that
propagation can be viewed as a generalized random walk,
sharing with classical random walk the property that the
mean square displacement increases linearly in time but dif-
fering from it by the possibility of performing a wide range
of jumps to both near and far neighbors. We have identified
the probability density of these jumps as well as the effective
mobility of the extreme and disentangled the relative roles of
the local dynamics and of the spatial coupling.

An important consequence of the diffusive character of
propagation of extremes in space is that long-range connec-
tions can be established in a rather short time interval. This
should be taken into account when attempting to predict their
future evolution.

Throughout the present work the parameters controlling
the system’s behavior were taken to be space and time inde-
pendent. Furthermore, the system was supposed to be free of
systematic external forcings. Now, the occurrence of extreme
events in many real world situations is often accompanied by
the presence of systematic biases giving rise to a statistically
nonstationary process, for instance, suddenly switching on an
electronic circuit or a strong depression invading a previ-
ously quiescent atmosphere. It would undoubtedly be inter-
esting to extend our analysis to account for such situations.
The extension to space and time-continuous models of con-
crete systems arising in environmental or in physicochemical
applications would also be worth undertaking.
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FIG. 10. As in Fig. 9 but for the symmetric cusp map.
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